Characterizing the Phenotypic Responses of Escherichia coli to Multiple 4-Carbon Alcohols with Raman Spectroscopy
نویسندگان
چکیده
The phenotypic responses of E. coli cells exposed to 1.2% (v/v) of 1-butanol, 2-butanol, isobutanol, tert-butanol, and 1,4-butanediol were studied in near real-time using Raman spectroscopy. A method of “chemometric fingerprinting” was employed that uses multivariate statistics (principal component analysis and linear discriminant analysis) to identify E. coli phenotypic changes over a 180 min post-treatment time-course. A toxicity study showed extreme variability among the reduction in culture growth, with 1-butanol showing the greatest toxicity and 1,4-butanediol showing relatively no toxicity. Chemometric fingerprinting showed distinct phenotype clusters according to the type of alcohol: (i) 1-butanol and 2-butanol (straight chain alcohols); (ii) isobutanol and tert-butanol (branched chain alcohols); and (iii) control and 1,4-butanediol (no terminal alkyl end) treated cells. While the isobutanol and tert-butanol treated cells led to similar phenotypic responses, isobutanol was significantly more toxic. In addition, the phenotypic response was found to take place largely within 60 min of culture treatment; however, significant responses (especially for 1,4-butanediol) were still occurring at 180 min post-treatment. The methodology presented here identified different phenotypic responses to seemingly similar 4-carbon alcohols and can be used to study phenotypic responses of virtually any cell type under any set of environmental conditions or genetic manipulations.
منابع مشابه
Near-real-time analysis of the phenotypic responses of Escherichia coli to 1-butanol exposure using Raman Spectroscopy.
Raman spectroscopy was used to study the time course of phenotypic responses of Escherichia coli (DH5α) to 1-butanol exposure (1.2% [vol/vol]). Raman spectroscopy is of interest for bacterial phenotyping because it can be performed (i) in near real time, (ii) with minimal sample preparation (label-free), and (iii) with minimal spectral interference from water. Traditional off-line analytical me...
متن کاملPhenotypic profiling of antibiotic response signatures in Escherichia coli using Raman spectroscopy.
Identifying the mechanism of action of new potential antibiotics is a necessary but time-consuming and costly process. Phenotypic profiling has been utilized effectively to facilitate the discovery of the mechanism of action and molecular targets of uncharacterized drugs. In this research, Raman spectroscopy was used to profile the phenotypic response of Escherichia coli to applied antibiotics....
متن کاملAssessment of environmental high-doses using Raman spectroscopy of gamma irradiated MWCNT-OH Nanopowder utilized in radiation accidents
Introduction: The functionalized Multi-Walled Carbon Nanotube with hydroxyl group (MWCNT-OH) due to high aspect ratios (length to diameter), and also excellent mechanical, electrical and thermal characteristics, has great potential applications in flexible electronics, solar cells, antistatic devices, electromagnetic interference shielding, radiation shielding, electrode materi...
متن کاملEvaluation of Efflux pump activity among Uropathogenic Escherichia coli and Klebsiella pneumonia multiple- Drug Resistance isolates
Antibiotic resistance is a phenomenon in which antibiotic used to treat bacteria becomes useless due to resistance mechanism. Increased drug resistance and occurrence of Multiple Drug Resistance in bacteria specificity nosocomial and Urinary Tract Infection bacteria has reduced the possibilities of treating these infectious diseases. Efflux pumps are one of the major mechanism of MDR in bacteri...
متن کاملA RIGOROUS COMPARISON OF METHODS FOR MULTI-WALLED CARBON NANOTUBES PURIFICATION USING RAMAN SPECTROSCOPY
Multi-walled carbon nanotubes (MWNT’s) were synthesized using chemical vapor deposition (CVD) method in a fluidized bed reactor under the flow of methane and hydrogen gases. A Cobalt-molybdenum/magnesium oxide (Co-Mo/MgO) nanocatalyst was used as the catalyst of the process. The samples were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The effects of d...
متن کامل